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Background, Motivation, and Objectives
Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars 

contain heavily altered materials with some component of hematite, poorly crystalline 
ferric oxides, and an undefined silicate matrix.  The spectral properties of many low 
albedo regions indicate crystalline basalts containing both low and high calcium 
pyroxene, a mineralogy consistent with the basaltic SNC meteorites.  The Thermal 
Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has 
acquired critical new data relevant to surface composition and mineralogy, but in a 
wavelength region that is complementary to reflectance spectroscopy.  The essence of 
the completed research was to analyze TES data in the context of reflectance data 
obtained by the French ISM imaging spectrometer experiment in 1989.  This approach 
increased our understanding of the complementary nature of these wavelength regions 
for mineralogic determinations using actual observations of the martian surface.  The 
research effort focused on three regions of scientific importance:  Syrtis Major-Isidis 
Basin, Oxia Palus-Arabia, and Valles Marineris.  In each region distinct spatial 
variations related to reflectance, and in derived mineralogic information and interpreted 
compositional units were analyzed.  In addition, specific science questions related to 
the composition of volcanics and crustal evolution, soil compositions and pedogenic 
processes, and the relationship between pristine lithologies and weathering provided 
an overall science-driven framework for the work.  The detailed work plan involved co-
location of TES and ISM data, extraction of reflectance and emissivity spectra from 
areas of known reflectance variability, and quantitative analysis using factor analysis 
and statistical techniques to determine the degree of correspondence between these 
different wavelength regions.  Identified coherent variations in TES spectroscopy were 
assessed against known atmospheric effects to validate that the variations are due to 
surface properties.  With this new understanding of reflectance and emission 
spectroscopy, mineralogic interpretations were derived and applied to the science 
objectives of the three regions.  

Significance
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Thermal emission spectroscopy will provide new global observations relevant to 
determining surface mineralogy of Mars over the course of the TES and THEMIS 
(2001) investigations.  However, our experience in understanding emission 
spectroscopy of the martian surface is limited.  In contrast, there are many decades of 
experience in the use of reflectance spectroscopy to study Mars.  The results and 
lessons learned from reflectance spectroscopy provide an essential context for the 
exploration of Mars with TES.  There are a number of well documented mineralogic 
investigations that have been made with ISM, as well as the identification of 
unanswered scientific questions.  This provides the context to analyze TES emissivity. 
This investigation strengthened the Mars exploration goal of mineralogic mapping 
through a detailed analysis of the relationship between actual  coregistered reflectance 
and emissivity measurements of Mars. There are three primarily impacts of this 
research.  The first is in providing a concrete spectroscopic and mineralogic guide 
based on reflectance to assist in the unraveling of mineralogic information from the 
TES measurements.  The second is identifying which wavelength regions and to what 
extent reflectance and emission spectroscopy provide comparable mineralogic and/or 
surface property information, and where the information is complementary.  The third 
impact is new insights into the mineralogy of the mafic to ultramafic volcanics, origin 
and evolution of pedogenic crusts, compositional diversity of mobile components on the 
surface, and the relationship between pristine and weathered products. 
ISM Instrument, Data Reduction and Calibration

The ISM instrument is a scanning imaging spectrometer that covered the spectral 
range 0.76 to 3.16 µm (Bibring et al. 1989; Erard et al. 1991).  This data set has been 
extensively analyzed over the last decade and there are over 40 engineering and 
science publications relate to the data or instrument (documented on the website 
ism.ias.fr).  The technical issues related to the science analyses of these data 
(calibration, atmospheric compensation, aerosol effects) have been vigorously debated 
by the community as part of peer review during paper publication.  As we have 
participated in many of these efforts, we are aware of the central issues, have dealt 
with the problems, and are entirely cognizant of the strengths and limitations of the ISM 
spectral data.  Because these issues have been thoroughly addressed in the literature 
(see the ISM web site for a list) as well as previous proposals by the PI, in the interest 
of brevity they will not be restated here except where the issues have a direct bearing 
on the proposed research.

TES Instrument, Data Reduction and Calibration, and Merging with ISM
The TES instrument contains a Michelson interferometer that acquires 

measurements of thermal emission from 6-50 µm (1700-200 cm-1) with either 5 or 10 cm-

1 spectral resolution.  It also contains two wide-band bolometer channels to measure 
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solar reflectance (0.3-2.7 µm) and thermal radiance (4-100 µm) at the same spatial 
resolution and coverage.  The instruments are boresighted and all have an 
instantaneous field of view of 8.5 mrad.  From the MGS mapping orbit, this corresponds 
to a spatial resolution of 3x6 km/pixel (the pixels are not square due to uncompensated 
spacecraft motion).  The instrument is reported to have an absolute radiometric 
accuracy of better than 4x10-8 W/(cm2•sr•cm-1) and a signal to noise ratio better than 
450 at 10 µm viewing a 270 K surface (Christensen et al., 1992; 2001a).

Approximately 8.5 million TES spectra were first selected from approximately 53 
million for quality using factors including emission angle, temperature, spacecraft 
parameters, etc.  The spectra were then deconvolved into atmospheric and surface 
components consisting of 2 dust and 2 cloud atmospheric endmembers, and hematite, 
Type I (Syrtis), and Type II (Acidalia) surface endmembers following previous works.  
These endmembers along with a blackbody successfully model the low albedo regions 
on Mars over the 73 bands (excluding the CO2 absorption) from 233 to 1301 cm-1 (7.68 
to 33 µm) (Bandfield et al., 2000).  Subtraction of the atmospheric components from 
each of the original TES spectra yielded atmosphere-removed surface spectra.  These 
spectra were then gridded into 0.5° x 0.5° bins to create a global data set.  To facilitate 
comparison of TES and ISM data, the TES spectra were first converted to reflectance 
using Kirchhof's Law.  This allows the joined spectra to be displayed on a common axis. 

The 64 band ISM spectra (0.77 to 3.14 µm) were matched to the TES half-degree 
grid via a nearest-neighbors approach.  The resultant data cube contains both NIR and 
MIR spectra of the surface in 137 bands.  Because the Phobos 2 mission ended 
prematurely, only a limited portion of the surface was covered.  The 6 best data cubes 
of the 9 obtained with 22 km resolution were used here (locations are shown in Figure 
3).

Analysis Results 
The first step in the joint analysis of ISM and TES was to assess whether any 

significant changes in surface albedo had occurred between the two measurements, 
which would indicate regions where joint analysis would be invalid due to likely 
compositional changes on the surface.  Comparison of TES vis-NIR bolometer 
measurements with the integrated average ISM reflectance for the gridded data set 
demonstrated that no significant changes in surface albedo occurred at the spatial 
scale of the merged data set, and thus joint analysis of the complete data set was 
warranted. 

One of the most distinctive mineralogic signatures in the ISM data is the broad 
absorption centered near 2 µm related to Fe2+ crystal field absorptions.  An equally 
distinct absorption related to pyroxene occurs near 1.0 µm, but this absorption may be 
modified by the presence of ferric oxides, olivine, and is most affected by slope effects 
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Figure 1.  (left) Merged ISM (reflectance) and TES (1-emissivity) spectra for a range of 
regions that are interpreted to exhibit mineralogic diversity in ISM (Mustard et al., 1997).  
(right) Scatter plot of the strength of the 22 µm pyroxene feature (TES) vs. the 2 µm 
pyroxene feature (ISM).

of aerosols.  Mustard and Sunshine (1995) concluded that this feature was due to 
overlapping crystal field absorptions in both low and high calcium pyroxene, though 
others have argued that the absorption could be modeled by a singled pyroxene 
composition.  Regardless, the strength of the 2 µm band is to first order related to the 
pyroxene concentration of the surface materials.  TES spectra of dark regions 
dominated by Type I materials such as Syrtis Major exhibit a strong mineralogic feature 
near 22 µm related to pyroxene and mineralogic modeling indicates that high calcium 
pyroxene is likely responsible for this feature (e.g. Hamilton et al, 1997; 2001; 
Bandfield et al, 2000).  

The correlation between the 2 and 22 µm band strengths is shown in Figure 1 along 
with representative merged ISM-TES spectra.  A consistent  relationship between ISM 
and TES spectra is observed where surfaces that are bright in the NIR are dark at TES 
wavelengths and vice versa.  The data in this scatter plot demonstrate a strong 
correlation between ISM and TES pyroxene band strengths.  Cooper and Mustard 
(2002a) also showed that the 2 µm band strength is strongly correlated with the 
fractional abundance of Type I materials.  In contrast with the band strength 
correlations, Mustard and Cooper (2002) showed that large variations in NIR spectral 
slope observed across Syrtis Major in ISM data have no apparent counterpart in TES 
spectra.  This is interpreted to indicate that the electromagnetic interaction that leads to 
the observed NIR spectral slope occurs at a physical scale or is due to an 
absorption/scattering process to which TES is insensitive.  
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Figure 2.  Pan spectra observations of normal bright red (green) and dark red (red) 
soils.  Note the presence of a 8.9 µm emissivity band diagnostic of cemented 
sulfate.

The joint analysis also reveals that regions characterized as dark red on the basis 
on their visible color and having distinct NIR spectral properties (e.g. Murchie et al., 
1993; 2000) are correlated with TES spectral features indicative of cemented sulfate 
(Cooper and Mustard, 2002ac, Mustard and Cooper, 2002).  Dark red regions have 

long been suspected of consisting of sulfate cemented soils (e.g. Arvidson 1989).  The 
spectra shown in Figure 2 are for typical bright red soils and dark red soils as defined 
by Viking color and ISM properties.  The TES spectra show subtle but consistent 
differences in spectral properties between these surfaces where the spectra of dark red 
soils exhibit a distinct absorption (reflectance peak) near 8.9 µm.  This is well 
correlated with the shape and strength of a laboratory spectrum of a mixture of JSC-
Mars 1 and MgSO4 where the mixture was cemented by adding water and allowing the 
mixture to dry (Cooper and Mustard, 2002c).  Thus we interpret the dark red surfaces 
with the TES spectral features to be sulfate cemented soils.  
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